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This article proposes several new or re"ned analytical methods for vehicle or machinery
system models that include measured dynamic sti!ness of vibration isolators or mounts.
Complications arising due to the spectrally varying and/or amplitude-dependent parameters
are categorized, and the associated eigenvalue and frequency response problems are de"ned.
First, the real and complex eigenvalue problems that include both viscous and visco-elastic
damping models are critically examined and illustrated via examples. Second, a non-linear
eigenvalue problem is formulated and the resulting eigensolutions are determined for
a two-degree-of-freedom system with frequency-dependent elastic and dissipative
parameters. Several approximate methods, including the modal expansion method, are also
proposed to calculate the forced harmonic response, and their solution errors are assessed.
Third, a quasi-linear method is applied to a 1/2 car model, using measured data of a typical
hydraulic engine mount, to see the e!ect of excitation amplitude-dependent dynamic
sti!nesses. Finally, a re"ned non-linear, frequency domain synthesis method is proposed
that includes local non-linearities in the form of measured dynamic sti!ness data. The forced
harmonic response of the overall system is obtained, and comparing to the corresponding
time domain method for a speci"c 1/4 car vehicle model validates it.
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1. INTRODUCTION

Sti!ness and damping rates of practical elastomeric isolators, hydraulic mounts and
the like depend on frequency and amplitude of the dynamic excitation, temperature,
visco-elastic material or #uid properties, geometrical shape factors, static preload, and
even the duration of time under which mounts have been operated [1}3]. Since these
properties are di$cult to analytically predict, experimental methods must be often adopted
for the dynamic characterization or system identi"cation [4}6]. One most common method
is the electrohydraulic dynamic (non-resonant) test system that determines the dynamic
sti!ness KI

d
(u, X)"FI

T
/XI at given excitation frequency u (rad/s) and displacement

amplitude X, while being subjected to a speci"c static load fM or displacement as shown in
Figure 1 [7, 8]. Here, & denotes a complex-valued quantity and the e*ut form is used for
harmonic signals since sub- and super-harmonics are usually ignored in experimental tests.
The measured spectra like those shown in Figure 2 form the basis of design work in most
applications including the automotive systems. One may also employ the Voigt model
approximation to "nd equivalent sti!ness k and viscous damping coe$cient c as a function
of u for any given X [9, 10]. However, such spectrally varying properties pose di$culties
since the common analytical tools and computational methods are based on the linear
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Figure 1. Engine mounting system. (a) Simpli"ed 1/4 car model illustrating engine-mount-chassis system,
(b) mount test concept.

Figure 2. The e!ect of excitation amplitude X on the measured dynamic sti!ness of a hydraulic engine mount
(A): + + +, X"0.1 mm; 00, X"1 mm; } } }, X"2 mm; **, X"3 mm [8].
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time-invariant (LTI) system theory, and the formulations require spectrally invariant values
of parameters.

This article intends to develop several analytical methods that may permit the inclusion
of KI

d
(u, X) data in lumped parameter-type dynamic simulation models. Several types of the

visco-elastic eigenvalue and frequency response problems will be proposed, and examples
include both machinery and vehicle models that incorporate KI

d
(u, X) data.
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2. PROBLEM FORMULATION

2.1. CLASSIFICATION OF PROBLEMS

The concept of complex dynamic sti!ness has been used for over "ve decades to describe
the dynamic behavior of materials and vibration control devices [10}12] since Kimball and
Lovell suggested the concept of solid damping in 1927 [13]. Elastomeric isolators, free layer
or constrained layer damping treatments, hydraulic mounts and the like often exhibit
frequency- and amplitude-dependent behavior. The dry friction and hysteretic damping
type phenomena have also been characterized in a similar manner [9, 14}16]. Table 1
summarizes "ve fundamental problems that are of interest, and each has been discussed in
the existing literature to some extent. The following expression may be used to de"ne the

sti!ness modulus DKI
d
D"K@

d
J1#g2 and loss angle /

K
"tan~1 g, where K@ is the storage

sti!ness, KA is the loss sti!ness and g is the loss factor:

KI
d
(u, X)"K@

d
(u, X)#iKA

d
(u, X)"K@

d
(u, X)[1#ig (u, X)]"DK3

d
(u, X) De*/K(u,X). (1)

Note that two de"nitions have been used in the literature to de"ne the dynamic sti!ness
term. The "rst de"nition deals with the KI

d
concept that is shown in Figure 1(a) and via

equation (1). The second de"nition is employed in conventional analytical, computational
or experimental vibration or modal analysis where the dynamic sti!ness or system matrix
for the LTI system is de"ned as D"Ks!u2M#iuC, where K

s
, M and C are static

sti!ness, mass and viscous damping matrices [17]. Both will be used in our analysis.
Speci"c visco-elastic models may be also employed in developing the classi"cations of

Table 1. Relevant problems will be discussed further in subsequent sections, along with an
appropriate review of literature. (Given the comprehensive scope of inquiry, only
representative articles will be cited.)

Physical mechanisms that generate frequency- and amplitude-dependent properties in
real-life devices and materials di!er but their manifestations in the frequency domain
may be similar in nature. Also, users may substitute one device or material over the other,
often relying on the measured properties. Yet another issue is the variation of system
parameters with respect to u or X. For example, expand K@

d
(u, X) or g (u, X) using the
TABLE 1

Classi,cation of relevant problems

Given Dynamic system type Typical examples

K@
d
OK@

d
(u, X)

gOg (u, X)
Linear time-invariant system Metallic mounts and structures [5]

K@
d
"K@

d
(u)

g"g (u)
Linear system with spectrally
varying properties

Visco-elastic damping layers [12]
Laminated composite panels [15]

K@
d
"K@

d
(u; X

o
)

g"g (u; X
o
)

Quasi-linear system Assumed model for non-linear
mounts [8]

K@
d
"K@

d
(X)

g"g (X)
Non-linear system with spectrally
invariant properties

Systems with clearances [18]
Continuous non-linearities
(hardening or softening springs) [19]

K@
d
"K@

d
(u, X)

g"g (u, X)
Non-linear system with spectrally
varying properties

Hydraulic mounts [8]
Powertrain clutches [20]

K@
d
"storage sti!ness; g"loss factor; u"frequency (rad/s); X"excitation amplitude.
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Taylor series

K@
d
(u, X)"K@

d
(u

o
, X

o
)#(u!u

o
)
LK@

d
Lu K

X/Xo

u/uo

#(X!X
o
)
LK@

d
LX K

X/Xo

u/uo

#O(Du2, DX2). (2)

This illustrates that if changes are rather small, then one may develop suitable analytical
approximations. Figure 2, however, shows that changes with u and X are rather large since
KI

d
(u, X) varies from 300 to 780 N/mm in modulus and from 2 to 383 in loss angle. Mostly

frequency variations will be discussed in this article though amplitude-dependent cases are
also addressed.

2.2. SCOPE AND OBJECTIVES

The scope of this article is limited to the frequency domain analysis, and only lumped
parameter models will be employed to illustrate the issues and methodology. Speci"c
objectives are as follows. (1) Clarify and formulate various types of eigenvalue problems
including the non-linear case given K3 d"K3 d (u), and examine the resulting real or complex
eigensolutions. (2) Examine the validity of the modal expansion method for frequency
response calculations for various cases of K3 d (u). (3) Determine the applicability of using
quasi-linear system models that may incorporate measured data KI

d
(u; X

o
). (4) Propose

a re"ned synthesis method to obtain the forced harmonic response when KI
d
(u, X) type

properties are included in a system model.
The generic machinery isolation system of Figure 3 will be examined "rst to illustrate the

analytical procedures and applications to machinery problems. Figure 1(a) and 4 illustrate
vehicle models that will be employed as examples. In Figure 1(a), only the vertical motions
are calculated, and the engine is described by a rigid mass m

e
. The chassis may be modelled

by a linear Voigt model (as shown) or by alternate formulation in terms of equivalent mass
Mc , viscous damping Cc and sti!ness Ksc matrices. Figure 4 shows the 1/2 car model where
di!erent degrees of freedom (d.o.f.) may be assigned. In our example, this will be a six-d.o.f.
system since only the vertical displacements are chosen.

One key issue that will be discussed later can be illustrated via the vehicle model of Figure
1(b) where x (t) corresponds to q

e
(t)!q

c
(t) of Figure 1(a). Both q

e
and q

c
need to be solved

for in a simulation program but if the measured mount data were to be included in terms of
KI

d
(u, X), numerical iterations are necessary. It should be also pointed out that true

non-linear analyses are very di$cult since the experimental procedures provide only the
&&black-box'' information, primarily in the frequency domain, while ignoring sub- and
super-harmonics [10].

3. LTI VISCO-ELASTIC MODELS

3.1. LITERATURE REVIEW

The single-d.o.f. viscous damping models have often been used to analyze the solid
damping phenomena, based on the energy-equivalent viscous damping coe$cient concept,
even though the dynamic response of the system may be quite di!erent [15]. To overcome
this discrepancy, dynamic sti!ness KI

d
formulation [9, 11, 21] may be used to model the

solid, structural, hysteritic, or visco-elastic dampings. However, the employment of
KI

d
prevents one from analyzing the transient response of the system since the resulting time



Figure 3. Two degree-of-freedom machinery isolation system with visco-elastic elements as described by
dynamic sti!nesses (KI

d
). These are in parallel with static sti!ness (k

s
) and viscous damping (c) elements.

Figure 4. Simpli"ed 1/2 car model. Degrees of freedom may be assigned depending on the frequency range of
interest and analysis objective. Other versions such as 1/4 car model are subsets of this case. KI

d1
"measured

dynamic sti!ness (modulus and loss angle) at any given frequency.

VIBRATION ISOLATION MOUNTS 389
domain model is non-casual [22]. Hence, the KI
d

concepts should only be used in the
u domain, and only the steady state responses must be sought. Such damping models may
be extended to a multi-d.o.f. system and the associated eigenvalue problem can be
formulated. The classical modal analysis method, based on the viscous damping
assumption, is also applicable to structurally or visco-elastically damped system under
certain conditions [16].
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Voigt, Maxwell, or Burgers models are subsets of a more general linear visco-elastic
model, which is usually de"ned by the nth order di!erential equation in terms of both
dynamic displacement (or strain) and force (or stress) [9, 12]. Among them, the Voigt model
is most widely used because of its simplicity [9, 10]. Hence, this article will only employ the
Voigt-type model for multi-d.o.f. dynamic systems, when the need arises.

3.2. FORMULATION

3.2.1. ¸¹I viscous damping models

Only harmonic excitation (f(t)"f3 ae*ut) and response (q(t)"q8 ae*ut) at u are considered in
this study. The mass matrix (M) is assumed to be spectrally invariant. The equations of
motions for a discrete system of dimension N are

MqK (t)#Cq5 (t)#Ksq(t)"f(t), [!u2M#iuC#Ks] q8 a(u)"f3 a(u). (3a,b)

When the system is undamped or proportionally damped, one can obtain real eigenvalues
(jr) and eigenvectors (ur) from the following well-known eigenvalue problem of the
undamped system [23]:

Ksur"jrMur , u2r "jr. (4a,b)

Forced harmonic responses are then obtained by using the classical normal mode
expansion method [23]. One may de"ne C for the proportionally damped system by
employing either the Rayleigh's model [24] or Caughey's [25] criterion as follows, where
a and b are scalar constants:

C"aM#bK, CM!1K"KM!1C. (5a,b)

When equation (5) is not satis"ed, a new eigenvalue problem for the non-proportionally
damped system must be formulated in the 2N space, as given below. The corresponding
eigensolutions (jI r and w8 r) are complex valued [26, 27]:

Ay5 (t)#By(t)"g (t), y (t)"[q5 (t) q (t)]T, g(t)"[0 f(t)]T, (6a}c)

A"C
0 M

M CD, B"C
!M 0

0 KsD. (6d,e)

Forced harmonic responses of a non-proportionally damped system can also be obtained
by using the generalized modal superposition method [26}28]. Basic steps include

[iuA#B]y8 a (u)"g8 a (u), y8 a (u)"[iuq8 a (u) q8 a (u)]T, (7a,b)

g8 a (u)"[0 f3 a (u)]T, Bw8 r#jI rAw8 r"0, w8 r"[jI ru8 ru8 r]T. (7c}e)

First, obtain the normal modal matrix W3 from w8 r by solving equation (7d) and then
calculate for the modal responses pJ wra(u) by uncoupling equation (7a) as follows:

y8 a(u)"W3 p8 wa(u), (8a)

p8 wa(u)"[p8
w1a

(u)2 pJ wra(u)2 pJ
w2Na

(u)]T, pJ wra (u)"
w8 Tr g8 a (u)

iu!jI r
. (8b,c)
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3.2.2. ¸¹I visco-elastic damping models

For the visco-elastic materials, the dynamic sti!ness matrix (K3 d) is usually expressed as
follows to account for both elastic and dissipative properties: K3 d"K@d#iKAd . Assume that
K@dOK@d(u) and KAdOKAd (u). The governing frequency response equations for a system of
dimension N are

[!u2M#K3 d]q8 a (u)"f3 a (u), D (u)q8 a (u)"f3 a (u), q8 a (u)"D!1(u)f3 a (u), (9a}c)

D (u)"!u2M#K3 d"!u2M#K@d#iKAd. (9d)

First, assume that the system is proportionally damped such that KAd"gK@d, where the loss
factor g is a spectrally invariant scalar constant. Now de"ne an eigenvalue problem by
expressing q (t)"ue*ut for the undamped (KAd"0) and unforced (f3 a(u)"0) system in
equation (9a). This yields an equation like equation (4) where Ks is replaced by K@d. The real
eigenvector ur must satisfy the orthogonal relations with respect to M and K@d [25]. Second,
consider the case when this system is non-proportionally damped. Now employ the
complex-valued terms uJ r, j3 r, u8 r, and K3 d and rewrite equation (4) as follows:

K3 du8 r"jI rMu8 r, jI r"jrR
#ijrI

"uJ 2r , uJ r"urR
#iurI

, (10a}c)

urR
"SjrR

#Jj2rR#j2rI
2

, urI
"S!jrR

#Jj2rR#j2
rI

2
. (10d,e)

Kung and Singh [29] have utilized this eigenvalue formulation for damped beams and
found excellent correlations with modal experiments. Unlike the non-proportional viscous
damping case given by equations (6) and (7), the complex eigenvalue problem of equation
(10) does not need to be transformed into the 2N-dimensional space. Also note that
eigenvectors u8 r still satisfy the following orthogonal relationship:

u8 Tr Mu8 j"drj, u8 Tr K3 du8 j"jI rdrj, r, j"1,2, N, (11a,b)

where drj is the Kroneker delta function. Note that the transpose of u8 r is taken here instead
of employing the Hermitian eigenvector (u8 Hr ), that is used for the orthogonal relationships
for an undamped system given by equation (4), i.e., u8 Hr Mu8 Hj "drj. Using the orthogonal
properties as given by equation (11) and the normal modal matrix U3 , the harmonic response
amplitude vector q8 a (u) is obtained by the modal superposition method,

q8 a (u)"U3 p8 a(u), (12)

where p8 a(u) is the response in modal co-ordinates. Equations (9c) and (12) should yield
identical answers unless modal truncation errors are present.

3.2.3. Combination of viscous and visco-elastic damping models

When both viscous and visco-elastic damping elements are present within a system, the
equations of motion must be expressed only in the u domain as

[!u2M#iuC#Ks#K@d#iKAd] q8 a (u)"fI a (u). (13)
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Four approximate methods will be proposed in this article in order to solve equation (13).
First, consider the Type I model that consists of both Rayleigh's viscous damping model of
equation (5a) and the visco-elastic material model (KAd"gK@d) where g is scalar. Assume that
Ks"C

sd
K@d, where C

sd
may be called as a scaling factor that relates static and dynamic

storage sti!nesses. Such a combined model should yield real eigensolutions based on the
eigenvalue problem

(Ks#K@d)ur"jrMr , (1#C
sd
)K@dur"jrMur. (14a,b)

Transforming equation (13) into the modal domain by using ur from equation (14), one can
obtain the modal response as

pJ ra(u)"
uT

r f3 a (u)

u2r !u2#i[au#u2r (g#bC
sd
u)/(1#C

sd
)]

. (15)

Forced harmonic responses are then obtained by using equation (12). Note that normal
modal matrix U is real-valued in this case.

The next three models, designated as Type II, III, and IV models, assume that KsOC
sd
K@d.

Since the eigenvectors from equation (14) do not uncouple equation (13), the eigenvalue
problem must include damping terms. This will result in a non-linear eigenvalue problem;
such problems will be discussed in the next section. To avoid the non-linear eigenvalue
problem, one may instead approximate eigensolutions by using equation (14) and calculate
the forced harmonic response by neglecting the o!-diagonal terms after the transformation
of equation (13) into the modal domain. The model that uses this approach will be called
Type II. One may also convert the viscous damping model to visco-elastic damping model
by assuming the Voigt (or comparable) model. The contribution of C, when converted into
the visco-elastic damping model, is de"ned here as KACd. The resulting equivalent (or
approximate) equations of motion for Type III model would be

[!u2M#K@de#iKAde]q8 a (u)"f3 a (u), K@de"Ks#K@d, KAde"KAd#KA
Cd

. (16a}c)

The eigenvalue problem of equation (16a) is constructed by replacing Kd with K@de#iKAde in
equation (10a) and forced harmonic responses are obtained by using equations (16a), (12),
and corresponding eigensolutions. The KACd matrix is obtained as follows. Neglect
visco-elastic terms of equation (13) and solve equation (4) to obtain ur and the normal
modal matrix Us. Then calculate the modal damping ratios 1 r"(a/ur#bur)/2. The
equivalent loss factor ger is now calculated by using ger"21r. Construct KACd as follows:

KA
Cd
"(UT

s )~1C
}

geru2r

}DU!1
s . (17)

Similarly, one may convert the visco-elastic damping KAd into the viscous damping model
where its contribution is de"ned as CKA

d
. The resulting equations for Model IV are

[!u2M#iuCe#Kse]q8 a (u)"f3 a (u), Ce"C#CKA
d
, Kse"Ks#K@d , (18a}c)

CKA
d
"(UT

d )~1C
}

21erur

}DU!1
d . (18d)
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In equation (18d), 1 er"g
r
/2 and ur and Ud are obtained by solving equation (4). Note that

Ks should be replaced by K@d. For the Type IV model, the eigenvalue problem of equation
(18a) becomes equation (7d) when C and K

s
are replaced by C

e
and K

se
, respectively. Using

equations (7a) and (8), forced harmonic responses are calculated.
To assess the validity of approximations associated with Type II, III and IV models, one

may de"ne several criteria. For example, the error e
qj
(u) will show how the approximate

solutions qJK
ja

(u) di!er from the exact qJ
ja

(u) solutions at any u. One could also obtain
a spectrally averaged value Se (u)Tu given Nu frequency points:

e
qj
(u)"

DqJK
ja

(u)!q8
ja

(u)D
DqJ

ja
(u)D

, Se(u)Tu"
1

Nu

Nu~1
+
k/0

e(u
k
). (19a,b)

3.3. EXAMPLES

All four models of the previous section will be numerically examined through the
machinery isolation system of Figure 3 that includes both viscous and visco-elastic
elements. One may easily evaluate frequency response functions using equation (9c). The
"rst example, with parameters of Table 2, considers a non-proportional visco-elastically
damped system. The resulting eigensolutions are u8 1"[0)0929!0)0004i 0)0262#0)0008i]T
at uJ

1
"11)1#0)83i Hz and u8 2"[!0)0371!0)0011i 0)0657!0)0003i]T at uJ

2
"18)3#

1)5i Hz. These do satisfy equation (11). Further, harmonic responses using equation (12)
exactly match with the exact ones given by equation (9c). The second example examines
Type I model with parameters that are listed in Table 2. The results are u1"[0)0929
0)0261]T at u

1
"13)6 Hz and u2"[!0)0369 0)0657]T at u

2
"22)3 Hz. Again the modal

superposition method using equation (15) yields the same spectra as the exact one given by
equation (9c).

The remaining examples consider Type II, III, and IV models, and their parameters are
adjusted by de"ning k

s2
"C

sd2
K@

d2
. The type I model assumes that C

sd2
"0)5 but C

sd2
is

varied from 0)1 to 10 for the remaining models. The value of k
s2
#K@

d2
is, however, retained

to ensure that the undamped system is the same as Type I considered. To see the e!ect of
damping, let C"p (aM#bKs) and KAd"p (gK@d). Damping ratios 1 r from the viscous
TABLE 2

System parameters for examples of section 3 with reference to Figure 3

m
1
"100 kg, m

2
"200 kg, K@

d1
"200 N/mm, K@

d12
"400 N/mm

Example Other parameters

First KA
d1
"g

1
K@

d1
, KA

d12
"g

12
K@

d12
, KA

d2
"g

2
K@

d2
K@

d2
"2000 N/mm, g

1
"0)1, g

12
"0)2, g

2
"0)15

k
s1
"k

s12
"k

s2
"c

1
"c

12
"c

2
"0

Second C"aM#bKs, Ks"C
sd

K@d, KAd"gK@d
K@

d2
"2000 N/mm, a"0)5, b"10~5, C

sd
"0)5, g"0)1

Third to Fifth C"p(aM#bKs), KAd"p (gK@d), k
s1
"C

sd
K@

d1
, k

s12
"C

sd
K@

d12
,

k
s2
"C

sd2
K@

d2
, k

s2
#K@

d2
"3000 N/mm

C
sd
"0)5, C

sd2
"0)1&10, a"0)5, b"10~5, g"0)01,

p"1, 10, or 100



Figure 5. Error introduced by Type II model in the third example of Table 2: **, p"1; 00, p"10; } } },
p"100.

Figure 6. Error introduced by Type III model in the fourth example of Table 2:**, p"1;00, p"10; } } },
p"100.
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damping model range from 0)27 to 0)73% for p"1 (lightly damped), 2)7 to 7)3% for
p"10 (moderately damped), and 27 to 73% for p"100 (heavily damped). The results
for the Type II model are shown in Figure 5. When C

sd2
"0)5, Se

q2
(u)Tu is zero as expected.

But this approximation produces a rather large error for a heavily damped system.
Yet it gives good results especially when C

sd2
is from 0)1 to 1)5 since Se

q2
(u)Tu is less

than 5%.
Figure 6 show the results for the Type III model. Even for C

sd2
"0)5, Se

q2
(u)Tu has

non-zero values. In addition, overall errors are lager than those observed with the Type II
model. To understand this, eigensolutions from both models are compared with the exact



TABLE 3

Comparison of eigensolutions for section 3 examples when b
sd2

"0)1 and p"100

Mode Model type Natural frequency uJ r (Hz) Eigenvector u8 r

II 13.6 [1 0)28]T
1 III 15)0#6)38i [1 0)26!0)018i]T

Exact eigensolution 13)9#8)98i [1 0)24!0)038i]T

II 22)3 [!0)56 1]T
2 III 24)5#10)0i [!0)53#0)027i 1#0)017i]T

Exact eigensolution 23)6#13)0i [!0)49#0)054i 1#0)030i]T

Figure 7. Error introduced by Type III model when equation (13) is used for the uncoupling procedure in the
modal superposition method: **, p"1; 00, p"10; } } }, p"100.
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solutions which are obtained from the non-linear eigenvalue problem that is described
in the next section. However, Table 3 shows that the Type III model better approximates
eigensolutions than the Type II model does. This is due to the fact that equation (16a) is
used for the uncoupling procedure in the modal superposition method which is an
approximate version of equation (13), while the Type II model directly uses equation
(13). Figure 7 con"rms this "nding when the Type III model employs equation
(13) instead of equation (16a) based on the modal superposition method. Again for
C
sd2

"0)5, Se
q2

(u)Tu is zero. Overall errors are about half of those observed for the Type II
model.

Next, consider the Type IV model for the "nal example of Table 2. Results of Figure 8
indicate that the Type IV model predicts results comparable to those from the Type III
model (see Figure 6). However, when the values of a and b are decreased by 50%, the Type
III model performs much better as shown in Figure 9. Therefore, one may conclude that the
Type III model is better suited as an approximation when the visco-elastic damping is more
dominant than the viscous damping in a physical system; the Type IV model is
recommended for the opposite case.



Figure 8. Error introduced by Type IV model in the "fth example of Table 2: **, p"1; 00, p"10; } } },
p"100.

Figure 9. Errors associated with (a) Type III and (b) Type IV models when the viscous damping parameters
(a and b ) are reduced by 50%: **, p"1; 00, p"10; } } }, p"100.
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4. EXAMINATION OF PROBLEMS WITH SPECTRALLY VARYING PROPERTIES

4.1. LITERATURE REVIEW

Lumped parameter Voigt, Maxwell, or Burgers type models are often suggested
to simulate the measured spectral properties employed to describe the dynamics of
visco-elastic materials [9, 14]. For instance, Gaillard and Singh [20] have proposed several
linear and non-linear models of automotive clutches that include both visco-elastic and dry
friction elements. Predictions compare reasonably well with limited torsional vibration data
even though the physical mechanisms are yet to be understood.

The frequency-dependent properties lead to a non-linear eigenvalue problem. Lin and
Lim [30] have proposed a perturbation method that is used to "nd g of damping materials.
Similarly, Kung and Singh [29] have assumed spectrally invariant loss factors only within
certain frequency bands (say around the natural frequencies). Their formulations have been
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successful in describing the modal behavior of beam and plates with multiple damping
patches. Przemieniecki [31] has developed frequency-dependent mass and sti!ness matrices
in the "nite element method (FEM) to improve accuracy and reduce the computations
required to estimate natural frequencies and mode shapes of continuous linear elastic
systems. Note that the frequency-dependent properties in FEM type problems arise due to
the numerical discretization of the spectrally invariant continuous elastic structure, not
from sti!ness or damping element properties. Fergusson and Pilkey [17] have found
relationships between the coe$cients in the power series expansions for several types of
structural matrices, facilitating a more systematic approach in using frequency-dependent
structural matrices for FEM formulations. Recently, Brilla [32] has attempted to establish
orthogonal properties for approximate eigensolutions using the Laplace transform method
for visco-elastic problems. However, the fundamental properties of frequency-dependent
visco-elastic materials are yet to be understood.

4.2. ANALYTICAL FORMULATION

The perturbation type approaches are obviously not applicable to hydraulic mounts and
similar devices since their dynamic properties may vary signi"cantly over the applicable
range. For example, the sti!ness modulus DKI

d
D of a typical hydraulic engine mount could

vary substantially, depending on u or X as evident from Figure 2. Another key
characteristics of dynamic system with frequency dependent-sti!ness is that in general the
modal superposition method is not valid since the eigenvectors do not follow the
conventional orthogonal relations [30]. This aspect alone produces some challenge in
predicting the forced response of frequency-dependent structures using the experimentally
measured modes. The feasibility of using the modal superposition method will be
investigated for such a problem and the associated errors will be assessed to suggest some
guidelines. For example, the method may be acceptable when the error is within 10%.

4.2.1. Non-linear eigenvalue problem

For a system with frequency-dependent visco-elastic sti!nesses, use the same governing
equations as equation (9a) except now replace K3 d with K3 d(u). This yields a non-linear
eigenvalue problem that can be seen from equation (10a) when K3 d is replaced by K3 d(uR

).
Rewrite them as follows:

[!u2M#K3 d(u)]q8 a (u)"f3 a (u), K3 d (urR
)u8 r"jI rMu8 r. (20a,b)

As a special case, consider the following type of sti!ness matrix:

K3 d"aJ (u)K3 do, K3 do"K3 d (uo
), (21a,b)

where aJ (u) is scalar and a function of u and K3 d (uo
) is evaluated at a reference frequency u

o
.

Substitute equation (21a) into equation (20b) and obtain

K3 dou8 r"
jI r

a8 (urR
)
Mu8 r. (22)

Hence, the frequency dependency a!ects only the eigenvalues while maintaining the same
eigenvectors as those given by K3 dou8 r"jI rMu8 r. Here, u8 r satis"es the orthogonal relations
given by equation (11). However, for the general case of K3 d"K3 d(u) the resulting eigen-vectors
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u8 r from equation (20b) may not exhibit the orthogonality properties with respect to the M or
K3 d (u) matrices.

Since equation (20) is non-linear, it is di$cult to determine the number of eigenvalues
it may have even though the dimension of M or K3 d (u) is N. When the number of
eigenvalues of equation (20b) exceeds the system dimension N, one should observe more
than N peaks in the dynamic compliance spectra for a lightly damped system. For
example, consider the case when the mount system is modelled by a single-d.o.f. oscillator;
the number of peaks depends on the characteristics of the measured dynamic sti!ness,
which itself may exhibit multi-dimensional behavior due to its frequency dependence.
Singh et al. [10] have observed it in their transmissibility studies based on measured mount
data.

Based on the discussions presented in this and the previous sections, various eigenvalue
problems may be classi"ed depending on the visco-elastic damping formulation. Table 4
summarizes such a classi"cation.

4.2.2. Forced harmonic responses

When the system dimension N is relatively small, forced harmonic responses can be easily
calculated by using

q8 a (u)"D!1(u)f3 a(u), D(u)"!u2M#K3 d (u)"!u2M#K@d(u)#iKAd(u). (23a,b)

A look-up table may be used to "nd K3 d (u) values, and the responses are calculated at one
frequency at a time. However, this calculation procedure is not cost-e!ective when
N becomes rather large, for example when this calculation is attempted with a FEM type
numerical code. Therefore, the modal expansion technique should be adopted as the "rst
calculation method. Since the modal superposition method requires that eigenvectors must
satisfy equation (11), this approximation implies that u8 r as obtained from equation (20b) is
assumed to be orthogonal with respect to the M and K3 d (u) matrices. Therefore, equation
(11) must be employed to examine the validity of the orthogonality condition. Note here
that only N distinct eigenvalues and eigenvectors are assumed to exist. The following error
(e2
1
) criterion may be proposed to assess the extent of deviation from the orthogonality

property:

e2
1
(u)"

DDdet [diag(M3 M)]D!Ddet[M3 M]DD
Ddet[M3 M]D

#

DDdet[diag(K3 dM(u))]D!Ddet[K3 dM(u)]DD
Ddet[K3 dM (u)]D

, (24a)

M3 M"U3 TMU3 , K3 dM(u)"U3 TK3 d(u)U3 , (24b,c)

where U3 is the modal matrix corresponding to equation (20b) and the subscript M denotes
the modal domain. When e2

1
is small, we may apply the modal expansion method, given by

equation (12), to approximate the forced harmonic response.
Two approximate methods are considered next. One may "rst assume K3 d to contain

elements with constant values that are evaluated at u
o
. Now use any LTI method such as

equation (12); this will be called the approximate Method I. In the approximate Method II,
assume that only N eigenvalues and eigenvectors result from equation (20b), and further
assume the solution to be of the form of equation (12). Pre-multiply both sides of equation
(20a) by U3 T and obtain

[!u2M3 M#K3 dM (u)]p8 a(u)"U3 T f3 a(u). (25)



TABLE 4

Classi,cation of eigenvalue problems depending on damping model

Damping model Mathematical
representation

Eigenvalue problem
(Dimension)

Eigenvalues
(number of eigenvalues)

Eigen-vectors Orthogonality

Viscous, proportional C"aM#bKs Ksur"jrMur (N) Real (N) Real Valid

Viscous, non-proportional COaM#bKs Bw8 r"jI rAw8 r (2N)

A"C
0 M

M CD;
B"C

!M 0

0 KsD;
w8 r"C

jI ru8 r
u8 r D

Complex (2N) Complex Valid

Visco-elastic, proportional K3 d"K@d(1#ig) K@dur"jMur (N) Real (N) Real Valid

Visco-elastic,
non-proportional

K3 d"K@d#iKAd K3 du8 r"jI
r
Mu8

r
(N) Complex (N) Complex Valid

Visco-elastic,
proportionally varying
frequency dependent

K3 d(u)"a8 (u)K3 do

K3 do"K3 d(uo
)

K3 dou8 r"
jI r

a8 (u
R
)
Mu8 r (N)

uJ 2r "jI r; uJ r"urR
#iurI

Complex (N) Complex Valid

Visco-elastic, non-
proportionally varying
frequency dependent

K3 d(u)Oa8 (u)K3 do or
K3 d(u)"K@d(u)#iKAd (u)

K3 d(uR
)u8 r"jI rMu8 r (N)

uJ 2r2"jI r; uJ r"urR
#iurI

Complex (*N) Complex Invalid

Note: (1) Loss factor g is a spectrally invariant scalar constant. (2) M, C, and K
s
are real symmetric matrices. (3) Dynamic sti!ness matrix K3 d is not Hermitian, rather it is complex

symmetric, i.e., K3 d"K3 Td .
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An approximate solution may be obtained by taking only the diagonal terms in the modal
domain while neglecting o!-diagonal terms as follows:

C
}

mr

}D"diag [MM], C
}

kI r (u)

}D"diag [K3 dM (u)], (26a,b)

pJ ra (u)"
u8 Tr f3 a

!u2mr#k3 r (u)
, (26c)

where pJ ra is the rth element of p8 a or the approximate response of the rth modal coordinate.
The resulting solution q8) a from the modal superposition method, as given by equation (12), is
only an estimate of the true solution q8 a that is given by equation (23a). Note that the errors
involved in this approximation occur due to the absence of o!-diagonal terms of dynamic
sti!ness (DM (u)) in modal co-ordinates. To assess the associated error, the following error
criterion e2

2
is de"ned to measure how close diag (DM(u)) is to DM (u); recall that e2

1
of

equation (24a) is based on the deviation of eigenvectors from the orthogonal properties:

e2
2
(u)"

DDdet [diag (DM(u))]D!Ddet [DM(u)]DD
Ddet [DM(u)]D

, DM(u)"!u2MM#K3 dM (u). (27a,b)

The following two response-related error criteria are also de"ned to judge the validity of
two approximations that have been proposed here:

e
3
(u)"

Dq8) a(u)!q8 a (u)D
Dq8 a (u)D

, e
4
(u)"

DDq8) a(u)D!Dq8 a (u)DD
Dq8 a (u)D

. (28a,b)

Correlations between e
1
, e

2
, e

3
, and e

4
will be examined in the next section for selected

examples.

4.3. EXAMPLES

The "rst example considers the Type III model of section 3.2.3. However, in this example,
the forced harmonic response will be calculated by using the eigenvectors from the
non-linear eigenvalue problem (20b). The resulting errors based on the exact eigenvectors
are negligible when p is varied from 1 to 10. Error grows only when p is very large, say 100.
Compare these to the results of Figure 7 where the approximate eigenvectors of the Type III
model are used. Signi"cant improvement is observed even for a heavily damped system.

A comparison between the exact solution (9c) and the modal expansion method (12) is
sought when the sti!ness type of equation (21) is selected. The parameters of the "rst
example of Table 2 are used here except aJ (u)"1#u/(100n). Since eigenvectors are
orthogonal with respect to M or K3 d (u), both solutions yield exactly the same results.

Next, consider some spectrally varying sti!nesses to investigate the e!ects of their
properties. Assume that KI

d
(u) is an analytical function over u

L
)u!u

o
)u

H
with

K@
d
(u)"K@

doA1#
N{
+
n/1

a
n
-nB, KA

d
(u)"KA

doA1#
NA

+
n/1

b
n
-nB, (29a,b)



TABLE 5

System parameters for examples of section 4 with reference to Figure 3

Example Parameters

First The fourth example of Table 2

Second The "rst example of Table 2 and aJ (u)"1#u/(100n)

Third to Fifth C"p
s
(aM#bKs), k

s1
"C

sd
K@

d1o
, k

s12
"C

sd
K@

d12o
, k

s2
"C

sd2
K@

d2o
,

KA
d1o

"p
d1

g
1
K@

d1o
, KA

d12o
"p

d12
g
12

K@
d12o

, KA
d2o

"p
d2

g
2
K@

d2o
, k

s2
#K@

d2o
"3000 N/mm,

K@
d1o

"200 N/mm, K@
d12o

"400 N/mm, a"0)5, b"10~5, m
1
"100 kg, m

2
"200 kg

Third to Fourth p
s
"p

d1
"p

d12
"p

d2
"1)0, C

sd
"0)5, C

sd2
"1)0, g

1
"g

12
"g

2
"0)1

Third NA"N@, b
1
"a

1
, N@"1, a

1
"0)1, 1, or 2

Fourth N@"1 vs. N@"2 NA"N@, b
n
"a

n
N@"1: a

1
"0)1

N@"2: a
1
"0)1 and a

2
"0)1, 1, or 2

N@"2 vs. N@"3 NA"N@, b
n
"a

n
N@"2: a

1
"0)1, a

2
"0)1

N@"3: a
1
"0)1, a

2
"0)1, a

3
"0)1, 1, or 2

Fifth NA"N@ for KI
d1

(u), KI
d12

(u), and KI
d2

(u)
p
s
, p

d1
, p

d12
, and p

d2
"R(1, 100),s b

sd2
"R (0)1, 10), g

1
"g

12
"g

2
"0)005

N@"1 a
1

and b
1
"R(0)1, 2)

N@"2 a
1
, a

2
, b

1
, and b

2
"R(0)1, 2)

N@"3 a
1
, a

2
, a

3
, b

1
, b

2
, and b

3
"R(0)1, 2)

sR (a, b)"random function that assigns values from a to b.
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where K@
do
"K@

d
(u

o
), KA

do
"KA

d
(u

o
), and -"(u!u

o
)/max (Du!u

o
D). Also choose

u
o
"u

L
"0 Hz, and u

H
"50 Hz. Other parameters of the system of Figure 3 are listed in

Table 5.
The results of the third example are shown in Figure 10 where DHI

22
(u)D spectra are

compared between the exact solution and approximation I that assumes KI
d
"KI

do
. This

approximation gives reasonably good results as long as the sti!ness variation is less than
10% over the frequency range.

The fourth example examines the e!ects of higher orders in equation (29). Comparison
between N@"1 and 2 is shown in Figure 11(a). E!ects of N@"2 and N@"3 are shown in
Figure 11(b). With the same amount of variation, say 10 or 100%, the addition of higher
order terms has a reduced e!ect on the dynamic compliance. Consequently, the
approximation I may be used, even over a larger frequency range, provided the range is
divided into several regions such that the sti!ness variation is less than 10% within each
region.

Finally, the approximation II is considered to assess the resulting errors and to
examine correlations between error indices based on three sti!ness types as listed as the "fth
example in Table 5. Given 150 randomly selected sets of parameters, the correlation
coe$cients c [33] between spectrally averaged error indices Se

1
(u)Tu, Se

2
(u)Tu, Se

3
(u)Tu,

and Se
4
(u)Tu are calculated from 0 to 50 Hz, as shown in Figures 12}14. One can observe



Figure 10. Comparision of dynamic compliance spectra for the third example of Table 5:00, approximation I;
**, exact solution for a

1
"0)1; } ) } )}, a

1
"1; }} }, a

1
"2.

Figure 11. E!ect of higher orders of KI
d
(u) on dynamic compliance spectra for the fourth example of Table 5. (a)

N@"1 vs. N@"2, (b) N@"2 vs. N@"3. (a) 00, N@"1; **, N@"2 (a
2
"0)1); } ) } ) }, N@"2 (a

2
"1); } } },

N@"2 (a
2
"2) and (b) 00, N@"2; **, N@"3 (a

3
"0)1); } )} ) }, N@"3 (a

3
"1); } } }, N@"3 (a

3
"2).
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that e
1

is poorly correlated with e
3

and e
4
. But e

3
and e

4
correlate well with e

2
. Therefore,

one may conclude that the forced harmonic response can be reasonably approximated,
with less than 10% error, by the modal expansion method only when Se

2
(u)Tu is less

than 4%.



Figure 12. Correlation between error indices for the "fth example (N@"1) of Table 5. (a) Se
3
Tu versus Se

1
Tu;c"0)71, (b) Se

3
Tu versus Se

2
Tu; c"0)92, (c) Se

4
Tu versus Se

1
Tu; c"0)89, (d) Se

4
Tu versus Se

2
Tu; c"0)96.
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5. QUASI-LINEAR MODEL

5.1. 1/2-CAR MODEL

Kim and Singh [8] developed a quasi-linear method and applied it to a 1/4 car model.
Their method has identi"ed superior resonance control characteristics of the hydraulic
mount over the rubber mount in the low-frequency regime. Also, it has predicted the
well-known poor performance of the passive hydraulic mount at higher frequencies. This
quasi-linear method is applied to the 1/2 car model of Figure 4 since this model has not been
speci"cally examined before. Eigensolutions of this system are sought "rst and then forced
harmonic responses are calculated assuming the vehicle is subjected to either engine
excitation force or road displacement input. To avoid any non-linearity in the governing
equation, K3

d
(u, X) is evaluated at a given X

o
as K3

d
(u; X

o
), which is then used in place of

K3 d (u) in equation (20a). Equations of motions for Figure 4 can be easily derived, in terms of
the generalized displacement vector q (t)"[q

1
(t) q

2
(t) q

3
(t) q

4
(t) q

5
(t) q

6
(t)]T and force

vector f3 a"[F
1

0 k
s3

qJ
7a

0 0 k
s6

qJ
8a

]T. The resulting dynamic sti!ness matrix will include
K3

d
(u; X

o
) terms.

5.2. RESULTS

The following parameters are chosen for the 1/2 car of Figure 4: m
1
"125 kg,

m
2
"220 kg, m

3
"45 kg, m

4
"270 kg, m

5
"240 kg, m

6
"75 kg, k

s23
"22 N/mm,



Figure 13. Correlation between error indices for the "fth example (N@"2) of Table 5. (a) Se
3
Tu versus Se

1
Tu;c"0)59, (b) Se

3
Tu versus Se

2
Tu; c"0)93, (c) Se

4
Tu versus Se

1
Tu; c"0)65, (d) Se

4
Tu versus Se

2
Tu; c"0)91.
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k
s24

"2000 N/mm, k
s3
"200 N/mm, k

s45
"1800 N/mm, k

s56
"26 N/mm, and k

s6
"

200 N/mm. Measured data for two typical hydraulic mounts (B and C) are shown in
Figure 15; note that their properties di!er considerably from those of A (Figure 2).
Eigenvalues for hydraulic mount B are listed in Table 6; these are solved by using the
non-linear eigenvalue problem (20b). The number of eigenvalues (7) is more than the system
dimension (6) due to the frequency-dependent mount properties. Examples of frequency
response functions are shown in Figure 16 where the e!ect of X is clearly observed even
though the quasi-linear method is employed. Similar analyses may be conducted for any
mount, over the given range of measured data. This may yield useful design information.

6. ANALYSIS OF PROBLEMS WITH FREQUENCY- AND AMPLITUDE-DEPENDENT
PROPERTIES

6.1. LITERATURE REVIEW

Mathematical models of selected mounts or related phenomena have been attempted
which illustrate some of the non-linear mechanisms involved. For example, Kim and Singh
[8] have successfully developed a non-linear model of hydraulic engine mounts that
requires the measurement of fundamental #uid system parameters. However, the model is
device speci"c, and therefore one must construct a new simulation model from basic
principles and laboratory measurements for each component. Such a model, though
obtained via a time-consuming process, when available, can be extremely useful. For



Figure 14. Correlation between error indices for the "fth example (N@"3) of Table 5. (a) Se
3
Tu versus Se

1
Tu;c"0)51, (b) Se

3
Tu versus Se

2
Tu; c"0)95, (c) Se

4
Tu versus Se

1
Tu; c"0)45, (d) Se

4
Tu versus Se

2
Tu; c"0)85.

VIBRATION ISOLATION MOUNTS 405
example, Royston and Singh [34, 35] extended the models of Kim and Singh [8] and
studied the vibratory energy #ow issues.

Several linear system synthesis methods have been developed based on mobility concepts
[18, 36] or modal methods [37}39]. The modal techniques su!er in accuracy when
only a "nite number of vibration modes is used [40, 41]. Some investigators have also
included local non-linearities in their synthesis models [42}47]. In particular, Royston and
Singh [34] have developed a dual-domain synthesis method for a hydraulic mount, where
some non-linearities are handled in the time domain using the enhanced Galerkin method.
Non-linearity in the frequency domain is described via a relationship between frequency
and dynamic sti!ness, but the sub-system itself, as de"ned in the frequency domain, is still
linear.

6.2. NON-LINEAR SYNTHESIS METHOD

The single- or multi-term harmonic balance technique [19, 48], describing function
approach [49], or Galerkin methods [34, 35, 50, 51] have been very successful in
considering strong non-linearities. Such methods, however, explicitly demand a time
domain model that may require considerable e!ort to develop, given limited measurements
as mentioned previously. Instead, it is proposed that the measured KI

d
(u, X) data be directly

used in developing a system model. Note that the measured KI
d
(u, X) of a non-linear device

exactly corresponds to the single-term harmonic balance technique. One could, however,
expand this approach further in future where the &black box' could be characterized using



Figure 15. Measured dynamic sti!ness of typical hydraulic mounts: **, X"0)125 mm; 00, X"0)5 mm.

TABLE 6

Natural frequencies of the 1/2 car model of Figure 4 with hydraulic mount (B) data of Figure 19

Natural frequencies (Hz)

Given dynamic KI
d

Given static
Mode k

s
X"0)125 mm X"0)25 mm X"0)375 mm X"0)50 mm

1 1)1 1)1#9)5e!5i 1)2#8)5e!5i 1)1#8)5e!5i 1)1#7)3e!3i
2 8)4 7)7#1)6i 7)8#1)7i 7)9#1)8i 8)0#2)0i
3 8)8 8)7#3)4e!3i 8)7#3)8e!3i 8)7#4)0e!3i 8)7#4)2e!3i
4 11)2 11)1#1)1e!3i 11)1#1)2e!3i 11)2#1)3e!3i 11)1#1)4e!3i
5 15)4 12)7#1)1i 12)6#1)4i 12)5#1)7i 12)3#2)0i
6 24)1 18)0#0)85i 18)0#0)93i 17)9#0)99i 17)8#1)0i
7 * 24)7#0)15i 24)7#0)16i 24)6#0)15i 24)6#0)15i
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multi-term harmonic balance technique depending on the non-linear characteristics or the
accuracy needed.

A re"ned synthesis method, which incorporates local or sub-system non-linearities, is
proposed here to fully understand the system behavior while providing an e$cient
calculation alternative especially for large structures. The generic non-linear system is
de"ned exclusively in the frequency domain, as shown in Figure 17. Local non-linearities
are introduced by N

M
mounts that are located between two LTI sub-systems A and B of



Figure 16. E!ect of displacement amplitude (X) on engine accelerance for the 1/2 car model of Figure 4 with
hydraulic mount (C) of Figure 15: **, X"0)125 mm; 00, X"0)5 mm.

Figure 17. System synthesis concept that includes local non-linearities introduced by mounts.
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dimensions N
A

and N
B
, respectively. For the given harmonic excitations fI A (u) e*ut and

fI B (u) e*ut, assume that only the harmonic responses are of interest: q8 A(u) e*ut"[q8 AI (u)
q8 AM(u)]Te*ut and q8 B (u) e*ut"[q8 BM (u) q8 BI(u)]Te*ut. Here the response q8 A of sub-system
A consists of q8 AM that describes the interfacial regime with all mounts and q8 AI for the
remaining part. Similarly, q8 B of sub-system B can be decomposed in terms of q8 BM and q8 BI.
The harmonic displacements across the mount are de"ned as X3 e*ut"(q8 AM!q8 BM) e*ut and
the non-linear interfacial forces are given by f3 ; (u, DX3 D) e+ut"!K3 M(u, DX3 D)X3 e+ut and
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fI
¸
(u, DX3 D) e+ut"K3 M(u, DX3 D)X3 e+ut that are exerted on A and B respectively. The governing

equations of motion of the entire system are then assembled as follows:

[MA#iuCA#KA]q8 A(u, DX3 D)"f3 A(u)#LT
MAf3 ;(u, DX3 D), (30a)

[MB#iuCB#KB]q8 B (u, DX3 D)"f3 B (u)#LT
MBf3

¸
(u, DX3 D). (30b)

Here, L
MA

is a Boolean selection matrix which extracts the interfacial d.o.f. from sub-system
A (and likewise L

MB
is for B) and relates it to mounts. Now suppose that X3 is known (or

assigned a speci"ed value), then q8 A and q8 B can be expressed as UAp8 A and UBp8 B respectively,
by using the modal expansion method since the left-hand sides of equations (30) possess
only the LTI system property with proportionally damped CA and CB. Here, UA and
UB represent the normal modal matrix for A and B while p8 A and p8 B represent the normal
mode responses for A and B. Further de"ne p8 A and p8 B as

p8 A (u, DX3 D)"diagA
1

u2
A,k

!u2#2i1
A,k

uu
A,k
BUT

A(f3 A!LT
MAK3 M(u, DX3 D)X3 ), (31a)

p8 B(u, DX3 D)"diagA
1

u2
B,k

!u2#2i1
B,k

uu
B,k
BUT

B(f3 B#LT
MBK3 M(u, DX3 D)X3 ), (31b)

where diag (a
k
) is a diagonal matrix with a

k
as the kth element, u

A,k
is the kth natural

frequency of sub-system A, 1
A,k

is the kth modal damping ratio of A; the same nomenclature
is applied to sub-system B. If the assumed X3 is a valid solution, the responses q8 AM"LMAq8 A
and q8 BM"LMBq8 B should be consistent with the values given by X3 "q8 AM!q8 BM. Hence, the
non-linear system problem can now be reformulated in terms of the following non-linear
algebraic equation that must be iteratively solved for X3 at each u:

X3 (u)!LMAUA diagA
1

u2
A,k

!u2#2i1
A,k

uu
A,k
BUT

A (f3 A(u)!LT
MAK3 M (u, DX3 (u)D)X3 (u))

#LMBUB diagA
1

u2
B,k

!u2#2i1
B,k

uu
B,k
BUT

B(f3 B(u)#LT
MBK3 M(u, DX3 (u)D)X3 (u))"0. (32)

6.3. CONSTRUCTION OF A NON-LINEAR TIME DOMAIN MODEL

A time domain model for an amplitude- and frequency-dependent mount (say of Figure
1(b) is "rst developed, based on a linear frequency-dependent model. For example, the
model for Figure 2 with X"1.0 mm was expressed by Singh et al. [10]

K
d
(s)"

f
M

(s)

x (s)
"krA

s2

u2
n1

#

21
1
s

u
n1

#1BNA
s2

u2
n2

#

21
2
s

u
n2

#1B, (33)

where s is the Laplace transformation variable. Equation (33) can be transformed to the
corresponding time domain model as follows, where f

T
(t) is the transmitted force and x (t) is

the excitation, as shown in Figure 1(b):

1

u2
n2

f G
T
(t)#

21
2

u
n2

f 0
T
(t)#f

T
(t)"krC

1

u2
n1

xK (t)#
21

1
u

n1

x5 (t)#x (t)D. (34)



Figure 18. E!ect of parameters on KI
d
(u) as given by equation (34). (a) u

n1
, (b) 1

1
, (c) u

n2
, and (d) 1

2
:**, 50% of

baseline value; 00, baseline; } } }, 200% of baseline value.
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The amplitude-dependent model may now be empirically developed by observing the e!ects
of u

n1
, u

n2
, 1

1
, and 1

2
on K

d
(s), given simulation or measured data, as shown in Figure 18.

For example, the KI
d
(u, X) at X"0)1 mm of Figure 1(b) may be obtained by either

increasing u
n1

or decreasing u
n2

. Hence, the non-linear equation for this mount is
reformulated as follows where A

1
, A

2
, A

3
, and A

4
are empirical functions that assign

amplitude-dependent properties:

1

(A
3
u

n2
)2

f G
T
(t)#

2(A
4
1
2
)

A
3
u

n2

f Q
T
(t)#f

T
(t)"krC

1

(A
1
u

n1
)2

xK (t)#
2(A

2
1
1
)

A
1
u

n1

x5 (t)#x (t)D. (35)

In the time domain model, it is rather di$cult to incorporate X as a variable. Therefore, the
time history of x (t)"X sin (ut) is used as a criterion for selecting proper values of A

1
, A

2
,



Figure 19. Empirical parameters of equation (35): (a) A
1
, (b) A

2
, (c)A

3
, (d) A

4
.
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A
3
, and A

4
. Measured dynamic sti!ness data of Figure 2 have the following amplitude-

dependent characteristics. (a) From X"0)1 to 1 mm, DKI
d
(u)D and /

K
(u) increase until

the maximum at X"1 mm, and (b) when X exeeds 1 mm, DKI
d
(u)D and /

K
(u) start

decreasing. Four amplitude regimes are selected: Dx (t)D(0)1 mm, 0)1)Dx(t)D(1 mm,
1)Dx (t)D(2)5 mm, and Dx(t)D*2)5 mm. At each u and X of x (t)"X sin (ut),
f
T
(t)"f

Ta
sin (ut#/

K
) is obtained by numerically integrating equation (35) and neglecting

sub- and super-harmonic terms of f
T
(t). The dynamics sti!ness KI

d
(u, X) is then given by

fI
Ta

/X. Figure 19 shows the plots of four empirical parameters for mount A that correspond
to KI

d
(u, X) of Figure 20. Since equation (35) is constructed purely for the sake of validation,

it does not necessarily reproduce the results of Figure 2. Nonetheless, this formulation could
clearly show the e!ects of u and X for any mount.

6.4. 1/4-CAR EXAMPLE

Consider the 1/4 car of Figure 1(a) with parameters: m
e
"122)3 kg, m

c
"270 kg,

k
c
"20 N/mm, and b

c
"1400 Ns/m. The calculated KI

d
(u, X) of Figure 20 which resembles

the measured dynamic sti!ness of mount A of Figure 2 is used for solving equation (32).
Since the interfacial dimension is one, equation (32) is reduced to the following non-linear
algebraic equation:

A!m
e
u2#

!(m
e
#m

c
)u2#ib

c
u#k

c
!m

c
u2#ib

c
u#k

c

K3
d
(u, X)BX3 (u)"f

a
(u). (36)



Figure 20. Dynamic sti!ness calculated using equation (35).

Figure 21. Comparison of chassis acceleration levels: time domain method (00, D fI
a
D"10 N;**, D fI

a
D"100 N;

}} }, D fI
a
D"200 N) and frequency domain method (n, D fI

a
D"10 N; #, D fI

a
D"100 N; s, D fI

a
D"200 N).
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To provide KI
d
(u, X) at any values of u and X, one may resort to a surface "tting of Figure 20

by using bilinear, bicubic, or bispline interpolations. For the time domain analysis, the
non-linear mount equation (35) is substituted into the 1/4 car system of Figure 1(a) and the
resulting time domain model is as follows in terms of mount (or transmitted) f

T
(t) and

excitation forces f (t) :

m
e
q(
e
(t)#f

T
(t)"f (t), m

c
q(
c
(t)#b

c
qR
c
(t)#k

c
q
c
(t)!f

T
(t)"0, (37a,b)

kr

(A
1
u

n1
)2

(qK
e
(t)!qK

c
(t))!

1

(A
3
u

n2
)2

f G
T
(t)#

2kr (A2
1
1
)

A
1
u

n1

(q5
e
(t)!q5

c
(t))

!

2kr (A4
1
2
)

A
3
u

n2

f 0
T
(t)#kr (qe

(t)!q
c
(t))!f

T
(t)"0. (37c)
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For mount A of Figure 1, the relevant system parameters are u
n1

/(2n)"6 Hz,
u

n2
/(2n)"11)3 Hz, 1

1
"0)66, f

2
"0)35, and kr"270 N/mm. Predictions by equation (36) are

compared with the results of equation (37) in Figure 21. To solve equation (36), the values of
KI

d
at arbitrary points of u and X are provided by using a bilinear interpolation. It is quite clear

that the proposed frequency domain method matches extremely well with the time domain
integration technique. Non-linear characteristics of the 1/4 car are clearly observed when the
amplitude of excitation force D fI

a
D is varied. The "rst resonance peaks in all cases appear around

1)2 Hz; it is associated with k
c
and b

c
which implies the vehicle suspension mode. But the second

resonant peaks are observed around 9)5 Hz for D fI
a
D"10 N, 13)4 Hz for 100 N, and 15)1 Hz for

200 N; it is associated with the engine bounce mode. One may also observe a hardening spring
behavior since the backbone curves bend to the right. This has also been observed by Royston
and Singh [35], based on a semi-analytical calculation method.

7. CONCLUSION

Five fundamental problems of frequency- and amplitude-dependent isolators, as shown
in Table 1, have been de"ned and examined. Both linear and non-linear eigenvalue
problems, as listed in Table 4, have been formulated to handle the frequency dependency of
elastic and dissipative parameters. Real or complex eigensolutions may be obtained
depending on the numerical values of parameters. Further, it has been found that the Type
III model is better suited as an approximation when the visco-elastic damping is more
dominant than the viscous damping in a physical system. In addition, error analyses reveal
that the validity of the modal expansion method could be judged by using the error criterion
e2
2
. Nonetheless, a more fundamental study is needed to better understand the nature of the

non-linear eigenvalue problems. This work is left for a future project.
The application of the quasi-linear method to a 1/2 car model has revealed that frequency

dependency may cause the frequency response functions to exhibit more peaks than system
dimension would normally allow for an LTI system. This method is suitable to examine the
global e!ects of the displacement excitation amplitude in a vehicle model, as shown in
Figure 20. A re"ned non-linear synthesis method has been developed in the frequency
domain, and has been validated by comparing to the corresponding time domain model.
The proposed frequency domain formulation has distinct and pragmatic advantages over
the true time domain models that are often not available for practical devices. Future
studies may consider extending the synthesis method from a single-term to a multi-term
harmonic balance technique. Numerical issues associated with the surface "tting of
measured KI

d
(u, X) need to be examined in detail. The use of the continuation method [47]

could be implemented to trace the non-linear response curves.

ACKNOWLEDGMENT

The Chrysler Challenge Fund and the Goodyear Tire and Rubber Company (St. Marys)
are gratefully acknowledged for supporting this research.

REFERENCES

1. J. HARRIS and A. STEVENSON 1987 International Journal of<ehicle Design 8, 553}577. On the role
of non-linearity in the dynamic behaviour of rubber components.

2. P. W. ALLEN, P. B. LINDELY and A. R. PAYNE 1966 ;se of Rubber in Engineering. London:
MacLaren and Sons Ltd.

3. A. R. PAYNE and J. R. SCOTT 1960 Engineering Design with Rubber. New York: Interscience
Publishers Inc.



VIBRATION ISOLATION MOUNTS 413
4. S. GADE, K. ZAVERI, H. KONSTANTIN-HANSEN and H. HERLUFSEN 1995 Sound and <ibration
16}19. Stress/strain measurements of viscoelastic materials.

5. E. F. GOBEL 1974 Rubber Springs Design. New York: Halsted Press.
6. A. N. GENT 1992 Engineering with Rubber: How to Design Rubber Components. New York: Hanser

Publishers.
7. R. ORANGE 1999 Experimental Characterization of Elastomers. &&Rubber & Hydraulic Mounts''

short course at General Motors.
8. G. KIM and R. SINGH 1995 Journal of Sound and <ibration 179, 427}453. A study of passive and

adaptive hydraulic engine mount systems with emphasis on non-linear characteristics.
9. J. B. LAZAN 1968 Damping of Materials and Members in Structural Mechanics. New York:

Pergamon Press.
10. R. SINGH, G. KIM and P. V. RAVINDRA 1992 Journal of Sound and <ibration 158, 219}243. Linear

analysis of an automotive hydro-mechanical mount with emphasis on decoupler characteristics.
11. N. O. MYKLESTAD 1952 ¹ransactions of the ASME, Journal of Applied Mechanics 19, 284}286.

The concept of complex damping.
12. W. N. FINDLEY, J. S. LAI and K. ONARAN 1976 Creep and Relaxation of Nonlinear <iscoelastic

Materials. New York: Dover Publications Inc.
13. A. L. KIMBALL and N. Y. SCHENECTADY 1929 ¹ransaction of ASME, Journal of Applied

Mechanics 51, 227}236. Vibration damping, including the case of solid friction.
14. J. C. SNOWDON 1968 <ibration and Shock in Damped Mechanical Systems. New York: John Wiley

& Sons, Inc.
15. A. D. NASHIF, D. I. G. JONES and J. P. HENDERSON 1986 <ibration Damping. New York: John

Wiley & Sons, Inc.
16. C. T. SUN and Y. P. LU 1995 <ibration Damping of Structural Elements.Englewood Cli!s, NJ:

Prentice-Hall PTR.
17. N. J. FERGUSSON and W. D. PILKEY 1992 ¹ransaction of ASME, Journal of Applied Mechanics 59,

136}139. Frequency-dependent element mass matrices.
18. T. E. ROOK and R. SINGH 1995 Journal of Sound and <ibration 182, 303}322. Dynamic analysis of

a reverse-idler gear pair with concurrent clearances.
19. A. H. NAYFEH and D. T. MOOK 1979 Nonlinear Oscillation. New York: John Wiley and Sons.
20. C. L. GAILLARD and R. SINGH 2000 Applied Acoustics. Dynamic analysis of automotive clutch

dampers (in press).
21. S. NEUMARK 1957 Reports and Memoranda-Aeronautical Research Council (Great Britain) No. 3269.

Concept of complex sti!ness applied to problems of oscillations with viscous and hysteretic
damping.

22. S. H. CRANDALL 1970 Journal of Sound and <ibration 11, 3}18. The role of damping in vibration
theory.

23. F. S. TSE, I. E. MORSE and R. T. HINKLE 1978 Mechanical <ibrations: ¹heory and Applications.
Boston: Allyn and Bacon, Inc.

24. L. RAYLEIGH 1945 ¹heory of Sound, vol. 1. New York: Dover Publications, Inc.
25. T. K. CAUGHEY 1960 ¹ransaction of ASME, Journal of Applied Mechanics 27, 269}271. Classical

normal modes in damped linear systems.
26. K. A. FOSS 1958 ¹ransaction of ASME, Journal of Applied Mechanics 25, 361}364. Coordinates

which uncouple the equations of motion of damped linear dynamic systems.
27. G. PRATER, JR. and R. SINGH 1986 Journal of Sound and<ibration 104, 109}125. Quanti"cation of

the extent of non-proportional viscous damping in discrete vibratory systems.
28. L. MEIROVITCH 1980 Computational Methods in Structural Dynamics. Maryland: Sijtho!

& Noordho!.
29. S. W. KUNG and R. SINGH 1998 Journal of Sound and<ibration 212, 781}805. Vibration analysis

of beams with multiple constrained layer damping patches.
30. R. M. LIN and M. K. LIM 1996 Journal of Acoustical Society of America 100, 3182}3191. Complex

eigensensitivity-based characterization of structures with viscoelastic damping.
31. J. S. PRZEMIENIECKI 1965 ¹heory of Matrix Structural Analysis. New York: Dover Publication Inc.
32. J. BRILLA 1997 Meccanica 32, 187}195. Laplace transform and new mathematical theory of

viscoelasticity.
33. J. S. BENDAT and A. G. PIERSOL 1986 Random data Analysis and Measurement Procedures. New

York: John Wiley & Sons, Inc.
34. T. ROYSTON and R. SINGH 1996 Journal of Sound and<ibration 194, 243}263. Periodic response of

mechanical systems with local non-linearities using an enhanced Galerkin technique.



414 T. JEONG AND R. SINGH
35. T. ROYSTON and R. SINGH 1997 Journal of Acoustical Society of America 101, 2059}2069.
Vibratory power #ow through a nonlinear path into a resonant receiver.

36. J. M. CUSCHIERI 1992 Journal of Acoustical Society of America 91, 2686}2695. Parametric analysis
of the power #ow on an L-shaped plate using a mobility power #ow approach.

37. W. C. HURTY 1965 AIAA Journal 3, 678}685. Dynamic analysis of structural systems using
component modes.

38. A. L. HALE and L. MEIROVITCH 1980 Journal of Sound and <ibration 69, 309}326. A general
substructure synthesis method for the dynamic simulation of complex structure.

39. J. FARSTAD and R. SINGH 1995 Journal of Acoustical Society of America 97, 2855}2865.
Structurally transmitted dynamic power in discretely joined damped component assemblies.

40. J. FARSTAD and R. SINGH 1996 Journal of Acoustical Society of America 100, 3144}3158. E!ects of
modal truncation errors on transmitted dynamic power estimates in discretely joined component
assemblies.

41. T. E. ROOK and R. SINGH 1996 Journal of Acoustical Society of America 99, 2158}2166. Modal
truncation issues in synthesis procedures for vibratory power #ow and dissipation.

42. J. W. DAVID and L. D. MITCHELL 1984 Proceedings of the 2nd International Conference on Recent
Advances in Structural Dynamics, Vol. II, 271}280, Institute of Sound and <ibration, Southampton,
England, 9}13 April. Extension of transfer}matrix methodology to nonlinear problems.

43. Y. REN and C. F. BEARDS 1994 Journal of Sound and <ibration 172, 593}604. A new receptance-
based perturbative multi-harmonic balance method for the calculation of the steady state
response of non-linear systems.

44. A. N. JEAN and H. D. NELSON 1990 Journal of Sound and <ibration 143, 389}473. Periodic
response investigation of large order non-linear rotor dynamic system using collocation.

45. Y. K. CHEUNG, S. H. CHEN and S. L. LAU 1990 Journal of Sound and <ibration 140, 273}286.
Application of the incremental harmonic balance method to cubic non-linearity systems.

46. S. L. LAU and Y. K. CHEUNG 1981 ¹ransactions of the American Society of Mechanical Engineers,
Journal of Applied Mechanics 48, 959}964. Amplitude incremental variational principle for
nonlinear vibration of elastic systems.

47. C. PADMANABHAN and R. SINGH 1995 Journal of Sound and <ibration 184, 35}38. Analysis of
periodically excited non-linear systems by a parametric continuation technique.

48. R. J. COMPARIN and R. SINGH 1990 ¹ransactions of the ASME, Journal of Applied Mechanics 112,
237}245. An analytical study of automotive neutral gear rattle.

49. A. GELB and W. E. V. D. VELDE, 1968, Multiple Input Describing Functions and Nonlinear System
Design. New York: McGraw-Hill.

50. M. URABE 1966 Archives of Rational Mechanical Analysis, 120}152. Galerkin's procedure for
nonlinear periodic systems.

51. C. A. J. FLETCHER 1984 Computational Galerkin Methods. New York: Springer-Verlag.

APPENDIX A: NOMENCLATURE

a
1
, a

2
, a

3
coe$cients of polynomial orders in K@

d
(u)

b
1
, b

2
, b

3
coe$cients of polynomial orders in KA

d
(u)

a(u) spectral function
A

1
, A

2
, A

3
, A

4
amplitude-dependent non-linear parameters

A, B system matrices in 2N space
b
c

viscous damping coe$cient of chassis
c viscous damping coe$cient
C viscous damping matrix
D dynamic system (sti!ness) matrix
f, g force
F external force amplitude
f, g external force vector
i J!1
k sti!ness
K

d
dynamics sti!ness

K@
d

storage sti!ness
KA

d
loss sti!ness

K sti!ness matrix
L Boolean selection matrix
m mass
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M inertia matrix
N dimension of a dynamic system
N@, NA number of polynomial orders in frequency-dependent mount
Nu number of frequency points in e
p modal displacement
p modal displacement vector
q generalized displacement
q generalized displacement vector
R random function
s Laplace transformation variable
t time
u, w eigenvectors
U, W modal matrices
x displacement
x, y displacement vector
X displacement amplitude
a, b Rayleigh's coe$cients
d
ij

Kroneker delta function
e
1
, e

2
, e

3
, e

4
error criteria

D
d

decoupler gap
C
sd
, C

sd2
scaling factor between static and storage sti!nesses

/ phase angle
/
K

loss angle or phase of dynamic sti!ness
j eigenvalue
u frequency, rad/s
- non-dimensional frequency
1 viscous damping ratio
g loss factor

Subscripts

a amplitude
A sub-system A
B sub-system B
d dynamic sti!ness
e engine or equivalent quantity
c chassis
I imaginary part or a sub-system component
k index
r, j"1, 2,2,N modal indices
M mount or modal domain
¸ lower limit or lower interface of non-linear mount
H upper limit
o reference value
R real part
s static sti!ness
¹ transmitted quantity
; upper interface of non-linear mount

Superscripts

T transpose
& complex valued
} static load
) approximate value

Operators

diag diagonal matrix
Re real part of complex variable
Im imaginary part of complex variable
det determinant of matrix
S Tu spectral average
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